A Class of Parallel Multilevel Sparse Approximate Inverse Preconditioners for Sparse Linear Systems

نویسندگان

  • Kai Wang
  • Jun Zhang
  • Chi Shen
چکیده

We investigate the use of the multistep successive preconditioning strategies (MSP) to construct a class of parallel multilevel sparse approximate inverse (SAI) preconditioners. We do not use independent set ordering, but a diagonal dominance based matrix permutation to build a multilevel structure. The purpose of introducing multilevel structure into SAI is to enhance the robustness of SAI for solving difficult problems. Forward and backward preconditioning iteration and two Schur complement preconditioning strategies are proposed to improve the performance and to reduce the storage cost of the multilevel preconditioners. One version of the parallel multilevel SAI preconditioner based on the MSP strategy is implemented. Numerical experiments for solving a few sparse matrices on a distributed memory parallel computer are reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Preconditioners for Block Pentadiagonal Linear Systems Based on New Approximate Factorization Methods

In this paper, getting an high-efficiency parallel algorithm to solve sparse block pentadiagonal linear systems suitable for vectors and parallel processors, stair matrices are used to construct some parallel polynomial approximate inverse preconditioners. These preconditioners are appropriate when the desired target is to maximize parallelism. Moreover, some theoretical results about these pre...

متن کامل

Parallel Multilevel Block ILU Preconditioning Techniques for Large Sparse Linear Systems

We present a class of parallel preconditioning strategies built on a multilevel block incomplete LU (ILU) factorization technique to solve large sparse linear systems on distributed memory parallel computers. The preconditioners are constructed by using the concept of block independent sets. Two algorithms for constructing block independent sets of a distributed sparse matrix are proposed. We c...

متن کامل

A two-level sparse approximate inverse preconditioner for unsymmetric matrices

Sparse approximate inverse (SPAI) preconditioners are effective in accelerating iterative solutions of a large class of unsymmetric linear systems and their inherent parallelism has been widely explored. The effectiveness of SPAI relies on the assumption of the unknown true inverse admitting a sparse approximation. Furthermore, for the usual right SPAI, one must restrict the number of non-zeros...

متن کامل

An Algebraic Approach for H-matrix Preconditioners∗

Hierarchical matrices (H-matrices) approximate matrices in a data-sparse way, and the approximate arithmetic for H-matrices is almost optimal. In this paper we present an algebraic approach to constructing H-matrices which combines multilevel clustering methods with the H-matrix arithmetic to compute the H-inverse, H-LU, and the H-Cholesky factors of a matrix. Then the H-inverse, H-LU or H-Chol...

متن کامل

Multilevel Sparse Approximate Inverse Preconditioners for Adaptive Mesh Refinement∗

We present an efficient and effective preconditioning method for time-dependent simulations with dynamic, adaptive mesh refinement and implicit time integration. Adaptive mesh refinement greatly improves the efficiency of simulations where the solution develops steep gradients in small regions of the computational domain that change over time. Unfortunately, adaptive mesh refinement also introd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Scalable Computing: Practice and Experience

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2006